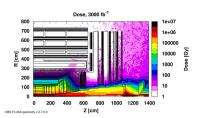
Multi-Boson Interactions CMS HL-LHC Multi-boson Physics Prospect

J. Lauwers on behalf of the CMS collaboration University of Antwerp

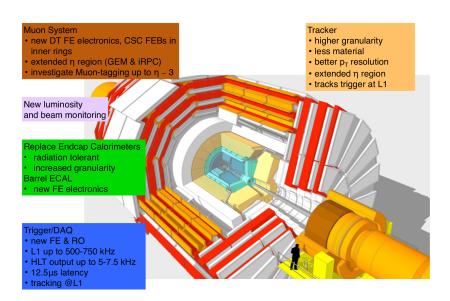
MBI 2016 - Madison, Wisconsin - 26 August

High Luminosity LHC



The High Luminosity LHC will shine a bright light on the dark corners of the SM.

The HL-LHC - A challenging environment


	Baseline Scenario	Upper limit
\sqrt{s} (TeV)	14	14
Instan L (cm $^{-2}$ s $^{-1}$)	5×10^{34}	7.5×10^{34}
Integr. L (fb ⁻¹)	3000	4000
< PU >	140	200

5-7 times current Luminosity

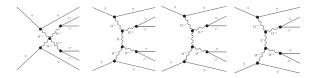
CMS Phase II

J. Lauwers

MBI Physics Goals at HL

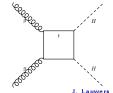
Gauge sector physics is central component of the SM HL program:

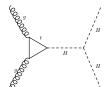
- ► High statistics studies of diboson states
- Observation of triple gauge boson production
- ► Observation of vector boson scattering
- Measurement of quartic gauge coupling constants (WWγγ, WWZγ, WWWW, WWZZ)
- Searches for higher mass scale physics through aTGC and aQGC


Higgs sector has multi-boson interaction within reach at HL:

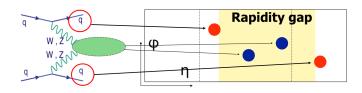
Measurement of di-Higgs production

CMS MBI studies for the HL-LHC


Vector Boson Scattering:

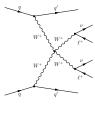

- Precision measurement in the electroweak sector with sensitivity to the electroweak symmetry breaking
- ► Test of the Higgs boson nature: V_L V_L scattering unitarity relies on strong cancellations with Higgs diagrams

Higgs pair production:


- ► Measurement of the Higgs boson self coupling
- Probe third derivative Higgs field potential at its minimum to discriminate against BSM models

CMS Run 2 and HL-LHC Multi-boson Physics Prospect

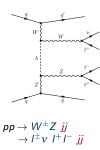
Vector Boson Scattering Topology



- ► Two highly energetic, forward 'tag jets' (identified as highest p_T jets) with large m_{jj} and $\Delta\eta_{jj}$
- ► Central leptons, MET
- Low amount of soft, hadronic activity in central-rapidity region

CMS Phase II: Measurement is enabled by improved forward jet reconstruction from tracker and calorimeter extensions and higher granularity.

VBS final states


Study of $W^{\pm}W^{\pm}$ and WZ scatting in the fully leptonic final states:

$$\begin{array}{c} pp \rightarrow W^{\pm}W^{\pm} \ jj \\ \rightarrow I^{\pm}v \ I^{\pm}v \ jj \end{array}$$

$W^{\pm}W^{\pm}ii$ backgrounds:

- ▶ Jets misidentified as leptons (semi-leptonic $t\bar{t}$, W+jets)
- WW QCD, WZ and charge misassignment

 $W^{\pm}Zii$ backgrounds:

- Fake lepton background negligible $(\eta_{lep} < 2.5)$
- ► WZ QCD and ZZ

Benchmarks

- Cross section measurement
- ▶ Longitudinal scattering cross section: $V_L V_L \rightarrow V_L V_L$ unitarized through the presence of the Higgs boson
- Partial unitarization:
 In theories involving more than a single Higgs boson, unitarization of VBS is only partially operated by the Higgs boson.
- Anomalous couplings (EFT):
 New physics in the EWK sector at a high mass scale could lead to strong enhancements in the cross section at high energy

Detector configurations

To assess VBS sensitivity at the HL-LHC three scenarios are studied:

- ► Phase II. 140 PU
- ► Phase I aged, 140 PU: Without phase II upgrade and including radiation damage after 1 ab^{-1}
- ► Phase I. 50 PU: Current non-aged detector and data conditions

Target: Maintain the Phase I configuration performance throughout HL period

Detector simulation with Delphes:

- Fast multipurpose detector response simulation framework
- Simplified detector geometries and parameterization of efficiencies and resolutions
- Parameterizations tuned and verified by comparison to full CMS GEANT4-based simulation

Fake lepton background

Backgrounds containing a jet misidentified as a lepton (probability $\sim 10^{-5}$)

ightharpoonup Dominant background $W^{\pm}W^{\pm}$ scattering from semi-leptonic ttbar events

Measure fake lepton probability from detailed-simulation sample:

- step 1: Determine probability for a jet to be geometrically matched to a fake lepton (i.e. not produced by the generator)
- \triangleright step 2: Correlation matrix between the matched jet P_T and the fake lepton P_T
- ▶ Both steps calculated separately for b jets and non-b jets

The results are cross-checked on several detailed-simulation samples.

To account for non-reliable normalization of the fake rate probability measured from simulation, results of the analysis are plotted as a function of a global fake rate scale factor.

Event Selection

Basic objects:

- tight leptons with $p_T > 20$ GeV and $|\eta| < 2.5$
- ► At least 2 jets with $p_T > 30$ GeV
- ► MET > 30-40 GeV
- ► extra loose lepton veto

VBS topology cuts:

- $m_{ii} > 625 850 \text{ GeV}$
- $ightharpoonup \Delta \eta_{ii} > 3-4$

WW cuts:

- Z mass veto
- ▶ b veto (loose b-tagging WP)
- ► soft muon veto (in jet cone)
- \blacktriangleright η_{I1} and η_{I2} between η_{iets}
- ► H_T (track jets) < 125 GeV (150GeV for phase II)
- $ightharpoonup m_{II} > 40 \text{ GeV}$
- ▶ $\Delta R(JJ, LL) < 6$
- $ightharpoonup \Delta \eta_{II} < 2$

WZ cuts:

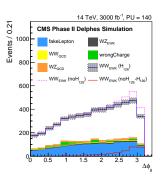
- ► Z mass selection
- ► $m_{II} > 20$ GeV for same flavour opposite charge lepton pairs

Analysis strategy

Classify events according to lepton flavour and charge:

WW

► Flavour: EE/MM/EM/ME


► Charge: ++ / - -

Perform 2D binned fit for each category and for every benchmark

 Best variables chosen with a scan on a large set of combinations

WZ:

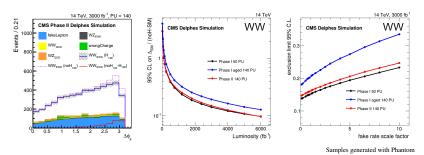
► Flavour: EEE/UUU/EEU/UUE

Cross section results

```
EWK W^\pm W^\pm jj XS uncertainty at the order of 5%, close to the systematic limit, after 3ab^{-1} EWK WZ scattering XS uncertainty at the order of 10% after 3ab^{-1}
```

Systematics:

- ► Theoretical uncertainties are taken from Runl analysis
- Experimental uncertainties:

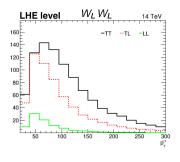

```
Phasel and Phasell: uncertainties from Runl analysis
```

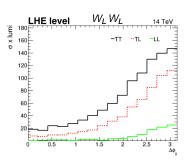
Phase I aged:

several systematics are downgraded (from detailed simulation comparison)

Partial unitarization results

- ► Use (noH H) excess as signal and SM contribution as background
- ► Expected 95% CL exclusion limit can be calculated on fraction of difference $\Delta_{SM}/(noH-SM)$
- ► Excluded signal strength is well below 1 for 3ab⁻¹


Combined WW and WZ result:


	Phase I	Phase II	Phase I aged
noH 95% CL exclusion	0.14	0.14	0.20

Phase II scenario recovers performance phase I scenario.

Longitudinal scattering

- $ightharpoonup V_L V_L$ component is considered as signal, $V_L V_T$ and $V_T V_T$ as backgrounds
- ► Signal is much reduced w.r.t. the total EWK scattering

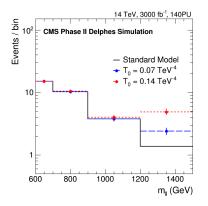
Madgraph v5.2.2.3 + decay package

Sensitivity from the low lepton P_T region.

Electroweak $V_I V_I$ jj results

► Expected significance after $3ab^{-1}$ at the level of 2σ for $W^{\pm}W^{\pm}jj$ and 1σ for WZjj

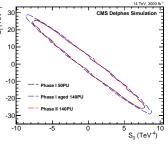
Combined result


	Phase I	Phase II	Phase I aged
$V_L V_L$ scattering significance (σ)	2.50	2.75	2.14

Phase II performs better due to improved lepton reconstruction for low P_T leptons.

$W^{\pm}W^{\pm}jj$ EFT

- New physics effects are parametrized by including higher dimension operators (8th order) in SM Lagrangian
- \blacktriangleright Exclusion limits on associated coefficients set through binned template fit on m_{\parallel}


$$\begin{split} \mathcal{L} &= \mathcal{L}_{SM} \left(+ \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} \right) + \sum_{i} \frac{c_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)} + \dots \\ \mathcal{L}_{T,0} &= \text{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \text{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right] \end{split}$$

$W^{\pm}W^{\pm}jj$ EFT results

- Expected upper 95% CL limits on the coefficients for the dimension eight operators
- ► Combination S0-S1: only modifies SM quartic gauge coupling

	phase I	phase II	phase I aged
So	1.06	1.07	1.17
S ₁	3.51	3.55	3.87
M _o	0.78	0.75	0.82
M_1	1.10	1.06	1.14
M ₆	1.56	1.49	1.63
M ₇	1.37	1.32	1.45
To	0.067	0.077	0.083
T ₁	0.036	0.033	0.036
T ₂	0.119	0.111	0.119

Limits from the 8 TeV analysis are 30 - 60 times higher

VBS expectations

Run 2 $(100 \, \text{fb}^{-1})$:

ightharpoonup Expected discovery of EWK $W^{\pm}W^{\pm}$ jj production

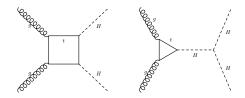
Run 3 $(300 \, \text{fb}^{-1})$:

- ► Expected discovery of EWK WZjj production
- Precision on the total XS of the EWK VBS processes at the order of 10 − 20%, Sensitivity to partially-unitarized models is expected: 95% CL exclusion for 0.6 times the (noH - H) difference

$HL-LHC (3000 fb^{-1})$:

- Sensitivity to partially-unitarized models:
 95% CL exclusion for 0.14 times the (noH H) difference
- Sensitivity to aQGC strongly enhanced
- \blacktriangleright Detecting the longitudinal component of the VV scattering remains challenging, expected significance of 2.75 σ

Room for improvements:


- Conservative estimates for pixel detector performance, possible improvements in reconstruction algorithms
- ▶ b-tagging only up to $|\eta|$ < 2.5
- ► Longitudinal scattering analysis strategy
- Semi-leptonic final states unexplored

J. Lauwers

Di-Higgs final states

Study of Higgs pair production in three final states

- Destructive interference gives very low NNLO cross section of ~ 40fb⁻¹ in gluon fusion production mode, 1000 times smaller than single Higgs production
- ► Without Higgs self-coupling cross section x 2

 $HH \to bb\gamma\gamma$

- ► Exp. events (3ab⁻¹): 320
- MC with smearing functions

HH o bb au au

- ► Exp. events (3ab⁻¹): 9000
- Combination of MC and Delphes

 $HH \rightarrow bbWW$ $\rightarrow bblvlv$

- Exp. events (3ab⁻¹): 1500
 - Delphes simulation

$HH \rightarrow bb\gamma\gamma$

Backgrounds:

- ► Resonant: ZH, $t\bar{t}H$, $b\bar{b}H$
- Non-resonant: $b\bar{b}\gamma\gamma$, $jj\gamma\gamma$, $b\bar{b}j\gamma$, $b\bar{b}jj$, jjjj and $t\bar{t}(\gamma)$ Produced at generator level and weighted by mis-tagging efficiencies and mis-identification rates.

$$\begin{array}{c|c} g \rightarrow \gamma & 10^{-4} \\ q \rightarrow \gamma & 5 \times 10^{-4} \\ \text{light } j \rightarrow b & 1\% \\ c \rightarrow b & 20\% \\ e \rightarrow \gamma & 1\% \end{array}$$

k-factor ~ 2

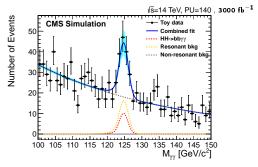
Two categories:

- 2 photons in barrel / at least 1 photon in endcap
- lacktriangle Dominant backgrounds: $bar{b}\gamma\gamma$, $bar{b}j\gamma$ / $bar{b}j\gamma$, $bar{b}jj$

Event Selection:

- ightharpoonup 2 photons with $P_T >$ 40, 25 GeV and $|\eta| < 2.5$
- ▶ 2 b-tagged jets with $P_T > 30$ GeV and $|\eta| < 2.4$

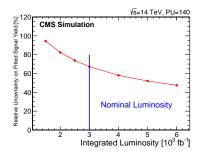
- ▶ loose lepton veto
- ▶ #jets < 4
- $\Delta R_{\gamma,\gamma} < 2.0$ $\Delta R_{bb} < 2.0$

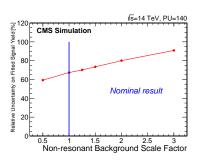

$$\Delta R_{bb} < 2.0$$

min $(\Delta R_{vb}) > 1.5$

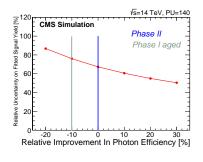
$HH \rightarrow bb\gamma\gamma$ - Signal Extraction

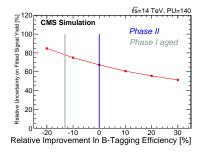
Fitting the double Higgs peak:


- ▶ 2D maximum likelihood fit on $M_{\gamma\gamma}$ and M_{bb}
- PDF's fitted on MC:
 Crystal Ball for resonances, decaying exponential for non-resonant backgrounds
- ► Correlation $M_{\gamma\gamma}$ and M_{bb} assumed to be negligible


Example toy experiment for category with two photons in barrel:

$HH \rightarrow bb\gamma\gamma$ - Results


Relative uncertainty on fitted signal yield (%):



- Expected significance at $3ab^{-1}$: 1.6σ
- ► Result dominated by statistical uncertainties

$HH \rightarrow bb\gamma\gamma$ - CMS upgrade

Small improvement to the selection efficiencies would have significant impact on the analysis sensitivity.

$HH \rightarrow bb\tau\tau$

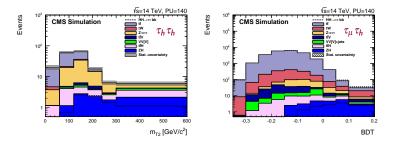
Backgrounds:

► Resonant: ZH, tīH

Non-resonant: tt, DY, tV, ttV, VV
 Combination of Delphes and generator level weighted by efficiencies.

Two categories

► $\tau_h \tau_h / \tau_h \tau_\mu$ τ_h : Hadronic tau decays τ_μ : Tau decays to μ


Event Selection

 $m_{ au au}$ reconstructed with likelihood based technique (SVFIT), important to discriminate against Z o au au.

$HH \rightarrow bb\tau\tau$ - Analysis strategy

Define kinematic bounding variable m_{T2} to discriminate against $t\bar{t}$:

- Maximal possible mass of the parent particle (t or H) consistent with the constraints
- Bounded above by the top mass for $t\bar{t}$ events, unbounded for di-Higgs signal events

To further exploit the boosted kinematics of di-Higgs production, a BDT is trained on masses, P_T , ΔR and m_{T2}

$HH \rightarrow bb\tau\tau$ - Results

Signal extraction:

- $ightharpoonup au_h au_h$: Maximum likelihood fit on m_{T2}
- $ightharpoonup au_{\mu} au_{h}$: Has a much larger leptonic $t\overline{t}$ background Maximum likelihood fit on BDT output

Expected significance:

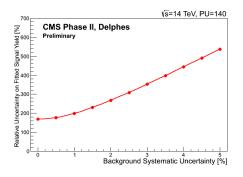
- ▶ 0.5 and 0.7 σ for $\tau_{\mu}\tau_{h}$ and $\tau_{h}\tau_{h}$
- ► Total: 0.9σ

Strong dependance on capability to trigger at level 1 on charged particles with the Phase II CMS detector, otherwise sensitivity reduced by $\sim 40\%.$

$HH \rightarrow bbWW \rightarrow bblvlv$

Backgrounds:

- ightharpoonup Dominant background: $t\bar{t}$ production with fully leptonic decay
- ► Other backgrounds negligible
- ► Detector simulation with Delphes


Event Selection

- ▶ 2 opposite sign leptons, muon $P_T > 20$ GeV, electron $P_T > 25$ GeV and $|\eta| < 2.5$
- ▶ 2 b-tagged jets with $P_T > 30$ GeV and $|\eta| < 2.5$

- $ightharpoonup m_{II} > 85 \text{ GeV}$
- ▶ 60 GeV $< m_{bb} < 160$ GeV
- $\begin{array}{ll} \bullet & \Delta R_{II} < 2.0 \\ \Delta R_{bb} < 3.1 \\ \Delta \phi_{bb,II} > 1.7 \end{array}$

$HH \rightarrow bbWW \rightarrow bb/v/v$ Results

A neural network is trained on the kinematic properties, taking into account the correlations

- Result from cut and count on NN discriminator
- Small contribution to significance when combined with the other final states

Higgs Pair production expectations

$HL-LHC (3000 fb^{-1})$:

- Combining $bb\gamma\gamma$ and $bb\tau\tau$ final states, the expected significance is 1.9σ
- Observation might be possible, after improvements and combining CMS and ATLAS results

Room for improvements:

- ► More sophisticated reconstruction and analysis techniques
- Additional di-Higgs boson production and decay modes remain unexplored, especially promising bbbb final state when using boosted b-tagging techniques

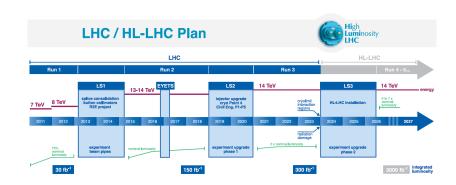
Conclusions

Many interesting future MBI results with the LHC. At the short term:

- Observation of triple gauge boson states
- ► Discovery of EWK VV+2j production
- ► Improved measurements of the anomalous triple and quartic gauge couplings

At longer term, HL-LHC:

- Sensitivity to partially-unitarized models
- Possibility of discovering longitudinal vector boson scattering and di-Higgs production, but further study is required


Analyses will benefit from HL LHC and phase 2 upgrades:

- ► Tracker extension improves tag-jets identification in scattering analysis
- \blacktriangleright The ability to measure the di-Higgs production in the most promising final states will largely depend on the identification and momentum resolution performance for b-jet, photons and τ

Backup

Backup

HL-LHC plan

