Speaker
Alex Drlica-Wagner
(Fermilab)
Description
Cosmic surveys study the fundamental physics governing dark energy and dark matter, which together comprise 95% of the Universe. To expand our knowledge of the dark sector, next-generation cosmic survey experiments will necessarily observe fainter and more distant systems. In this signal-limited regime, readout noise can become a driving factor in observational sensitivity. Skipper CCDs can reduce readout noise by over an order of magnitude by performing multiple reads of the charge in each pixel, while retaining the high quantum efficiency and linear response that cosmic surveys rely on. We present the benefits and challenges of using Skipper CCDs for the next-generation massivly multiplexed spectroscopic surveys.
Primary author
Alex Drlica-Wagner
(Fermilab)
Co-author
Dr
Noah Kurinsky
(Fermi National Accelerator Laboratory)