Speaker
Description
The study of the internal dynamics of nucleons, which make up the majority of visible matter in the universe, is critical to our understanding of the theory of strong interactions and the nature of matter itself. The recently upgraded CEBAF Large Acceptance Spectrometer (CLAS12) at Jefferson Lab aims to study questions such as: how are quarks confined in nuclear matter, how do the properties of protons and neutrons emerge from their constituent quarks and gluons and how do the nuclear forces arise from basic interactions? In order to answer these questions, CLAS12 began taking data in Spring 2018 with an 11 GeV longitudinally polarized electron beam incident on a liquid hydrogen target. In this talk I will cover some of the early results from CLAS12 that are already making valuable contributions to our understanding of the role of individual quarks and gluons in nucleonic structure and hadronization in general. These results include several measurements sensitive to Transverse Momentum Dependent distributions (TMDs) or Generalized Parton Distributions (GPDs) which cover the distribution of partons in 3D momentum and coordinate space respectively and are only the first step in CLAS12's contributions to the understanding of the nature of matter itself.