Speaker
Description
Jefferson Lab measurements of the EMC effect in light nuclei demonstrated that the nuclear modification of quark parton distribution functions (pdfs) does not simply scale with the mass or density of the nucleus, as previously assumed, but is sensitive to microscopic details of the nuclear structure. In addition, it showed that the connection between the EMC effect and the presence of short-range correlations (SRCs) is more than just a consequence of both effects scaling with nuclear density. I will show new measurements of the isoscalar EMC effect for A=3 nuclei, taken by combining measurements of the 3H and 3He EMC effect, as well as the first measurement on 10B and 11B, which will expand the set of measurements in light nuclei where detailed ab initio calculations can be performed. In addition to comparing the observed EMC effect to calculations, I will also discuss the potential implications of these data in better quantifying the EMC-SRC correlation when combined with SRC measurements on the same nuclei. Finally, I will discuss experiments that will run later this year to include additional light nuclei, and also to try and separate A and isospin dependence of the EMC effect (and SRCs) in medium-to-heavy nuclei.