Speaker
Description
Recently developed effective theories of QCD in matter have enabled the derivation of medium-induced branching processes as a function of nuclear opacity. I will demonstrate how splitting functions can be derived for both light partons and heavy quarks and discuss how parton showers in matter differ from the ones in the vacuum. These advances allow us to bridge the gap between high energy and nuclear theory and introduce higher order and resumed calculations to QCD phenomenology with nuclei. I will demonstrate this with three examples: i) inclusive light and heavy flavor meson production that can shed light on the physics of hadronization; ii) light and heavy jet production to constrain the transport properties of cold nuclear matter, and iii) jet substructure that, in the long run, can provide the most detailed insights into the microscopic physics of multiple parton interactions in nuclei.