Speaker
Description
The ${\rm M{\scriptsize AJORANA}}$ ${\rm D{\scriptsize EMONSTRATOR}}$ is an experiment designed to search for neutrinoless double beta decay of $^{76}$Ge. The ${\rm D{\scriptsize EMONSTRATOR}}$ consisted of two modules of p-type point-contact germanium detectors operating at the 4850’ level of the Sanford Underground Research Facility in Lead, SD. The experiment recently concluded its primary physics data taking campaign spanning 2015 to 2021, and released final results this summer (2022). This full 65 kg-yr exposure achieves a world leading energy resolution of 2.5 keV FWHM and one of the lowest background indices at the double beta decay Q-value, with a competitive half-life lower limit of 8.3e25 yr (90% C.L.). The low backgrounds, low-energy thresholds, and excellent energy resolutions also enable competitive searches for double beta decay to excited states and beyond the Standard Model (BSM) physics. Over its lifetime, ${\rm M{\scriptsize AJORANA}}$ has validated key technologies for the next-generation 76Ge experiment LEGEND. In this talk, we present the final results from the ${\rm M{\scriptsize AJORANA}}$ ${\rm D{\scriptsize EMONSTRATOR}}$, highlighting particularly the improved limit on neutrinoless double beta decay of 76Ge and recently-released searches at low-energy for BSM physics.