Speaker
Description
Despite its abundance, little is known about the particle nature of dark matter. Liquid argon-based detectors deployed in underground laboratories are powerful probes for direct detection dark matter searches, due to their scalability to large target masses, the low price of argon, their strong particle identification power using pulse shape discrimination to separate electronic and nuclear recoils, their high signal yields enabling low energy thresholds, and the exceptional purity that they can reach. Because of these properties, argon-based detectors make sensitive and versatile tools for searching for a variety of dark matter candidates, and they can serve as observatories for astrophysical neutrinos. This talk will present past, current, and future dark matter searches with argon-based detectors, along with technological advances that have been made to optimize the detectors' reach. Special attention will be paid to intersections between these efforts and other fields.