Conveners
Plenary
- Brendan Casey (Fermilab)
Plenary
- Brendan Casey (Fermilab)
Plenary
- Brendan Casey (Fermilab)
Plenary
- Brendan Casey (Fermilab)
Plenary
- Brendan Casey (Fermilab)
Plenary
- Brendan Casey (Fermilab)
Plenary
- Brendan Casey (Fermilab)
Plenary
- Brendan Casey (Fermilab)
Plenary
- Brendan Casey (Fermilab)
Plenary: Summaries
- Brendan Casey (Fermilab)
Plenary: Summaries
- Brendan Casey (Fermilab)
The E989 collaboration has published the most precise measurement of the muon anomalous magnetic moment $a_\mu$ with an uncertainty of $\mathrm{460\,ppb}$ in 2021. The new experimental world average of $a_\mu$ deviates by 4.2 standard deviations from the Standard Model prediction provided by the Muon g-2 Theory Initiative. The emerging results from ab-initio lattice QCD calculations allow to...
At Jefferson Lab, high luminosity electron beam are used to perform precision measurements on asymmetric nuclei including 3H, 3He, 48Ca, and 208Pb. Those nuclear system with imbalanced number of protons and neutrons provide a unique testing ground for isospin and flavor dependent effects in nuclear and nucleon structure. The recent Hall A Tritium Project which used the simplest many-body...
The 3D parton structure of strongly interacting systems is encoded in generalized and transverse-momentum-dependent parton distributions. We discuss the status of this very active research field and identify open questions. This includes a brief discussion of the overarching 5D partonic Wigner functions and the prospects of related studies at the future electron ion collider (EIC).
The $\beta$-decay of the free neutron contains a wealth of information about the charged weak interaction. Measurements of the lifetime and angular correlation coefficients can be use to determine $V_{ud}$, the first element of the Cabibbo–Kobayashi–Maskawa quark mixing matrix.Traditionally Super-allowed Fermi nuclear beta-decays have provided the most precise determination of $V_{ud}$, but...
We report on the result of the neutron electric dipole moment EDM search which took data in 2015 and 2016 at PSIs ultracold neutron source. The neutron EDM is deemed to be one of the most sensitive probes of physics beyond the standard model. The experiment measured the precession frequency of spin polarized neutrons as a function of a strong electric field. The electric dipole moment of the...
The Dark Energy Survey (DES) is an optical astronomical imaging survey of one-quarter of the Southern sky. The on-sky operations for the survey were completed in 2019, with observations conducted over the course of 6 years with a 3-square-degree wide-field mosaic camera -- the Dark Energy Camera, or DECam -- installed on the Blanco 4-meter telescope at the Cerro Tololo Interamerican...
The Baksan Experiment on Sterile Transitions (BEST) was designed to investigate the deficit of electron neutrinos, $\nu_e$, observed in previous gallium-based radiochemical measurements with high intensity neutrino sources, commonly referred to as the gallium anomaly. The BEST setup is comprised of two zones of liquid Ga target to explore neutrino oscillations on the meter scale. Any deficits...
Neutron stars are unique laboratories for studying strongly interacting, neutron-rich matter under extreme conditions. While much has already been learned about neutron stars in the era of multi-messenger astronomy, many key questions remain, especially regarding the composition and equation of state (EOS) of the ultra-compressed matter in their inner cores. At the same time, chiral effective...
The density dependence of the symmetry energy is a quantity that has long been anticipated to inform the determination of the neutron matter equation of state (EOS). Knowledge of the neutron distribution in heavy nuclei impacts nuclear structure theory, our understanding of neutron star structure, nuclear spectroscopy, atomic parity measurements and more. Electron scattering has already...
The ${\rm M{\scriptsize AJORANA}}$ ${\rm D{\scriptsize EMONSTRATOR}}$ is an experiment designed to search for neutrinoless double beta decay of $^{76}$Ge. The ${\rm D{\scriptsize EMONSTRATOR}}$ consisted of two modules of p-type point-contact germanium detectors operating at the 4850’ level of the Sanford Underground Research Facility in Lead, SD. The experiment recently concluded its...
The axion is a hypothetical particle motivated by the Strong CP Problem
of elementary particle physics and by the dark matter problem of cosmology.
Cold dark matter axions are naturally produced during the QCD phase
transition in the early universe by a process of vacuum realignment.
They may be detected on Earth by converting them to photons in an
electromagnetic cavity permeated by a...