Speaker
Description
The Los Alamos National Laboratory room-temperature neutron EDM (nEDM) experiment's goal is to measure the electric dipole moment (EDM) of the neutron with a projected uncertainty of $3 \times 10^{-27}$ e-cm. It will use Ramsey's method of separated oscillatory fields to track the spin precession of neutrons in two cells situated in a magnetically shielded room with precisely controlled and measured fields. Using two cells allows for the cancellation of common mode effects, reducing systematic uncertainties. Performed at the Los Alamos ultracold neutron (UCN) source, this experiment is one of several current nEDM experiments that search for a large permanent EDM because a permanent EDM is a CP-violating physical property. The Standard Model allows for only a small amount of CP-violation, too low to account for the matter-antimatter asymmetry of the universe. Experiments investigating CP-violation can probe physics beyond the Standard Model, including constraining the mass scale of new physics and investigating the mechanism of baryogenesis. This talk will cover the theoretical implications of an EDM, give an overview of the LANL nEDM experiment, and provide an update of its current status.