Speaker
Description
The Baksan Experiment on Sterile Transitions (BEST) was designed to investigate the deficit of electron neutrinos, $\nu_e$, observed in previous gallium-based radiochemical measurements with high intensity neutrino sources, commonly referred to as the gallium anomaly. The BEST setup is comprised of two zones of liquid Ga target to explore neutrino oscillations on the meter scale. Any deficits in the $^{71}$Ge production rates in the two zones, as well as the differences between them, would be an indication of nonstandard neutrino properties at this short scale. The target was exposed to $^{51}$Cr neutrino source and extractions $^{71}$Ge extractions from the two Ga targets were made. The $^{71}$Ge decay rates were measured and 4σ deviations from unity were observed for the ratio of the measured to the predicted rate from the known cross section in both zones.
I will discuss in my talk these recent results from BEST and how they reaffirm the previously observed Gallium anomaly. I will present how they fit into the landscape of other recent results that give hints of new physics at short baselines, but also show what could be possible explanations besides sterile neutrinos.