Speaker
Description
Dark matter may consist of feebly interacting massive particles (FIMPs) that have never thermalized with the cosmic plasma. Their relic density is successfully achieved through the freeze-in mechanism for a wide range of dark matter mass, significantly expanding the model space to be tested compared to other production mechanisms. However, testing the tiny couplings required by freeze-in is challenging. In this talk, I will show that FIMPs can be probed by LHC searches for new physics in mono-jet events with large missing energy. I will present a "gluophilic" $Z'$ portal model, in which gluon self-annihilation produces FIMPs in the early universe and also nowadays at colliders. Future mono-jet searches by LHC Run-3 might discover new physics accounted for FIMPs with mass scale in the MeV-TeV range.