Speaker
Description
Starting from the Weinberg formalism for the construction of fields for arbitrary spin, we propose an algorithm for the construction of the independent operators that enter the scattering amplitude associated with electromagnetic observables. This procedure is useful for the systematic study of the structure of hadrons and nuclei. In particular, it is very convenient in the case of spin-dependent observables. Since new features appear in the hadronic structure of higher spin targets, the investigation of their properties can improve our understanding of the strong force. As a proof of principle, we apply this method to the description of elastic electron-deuteron scattering. The result of calculations within Instant and Light-Front forms of dynamics is presented for the vector and axial electromagnetic form factors and is compared with the existing literature. We discuss potential extensions of the formalism to hard exclusive processes on the deuteron.
This research is partially supported by the National Science Foundation under grant number PHY-2111442.